

Journal of Molecular Catalysis A: Chemical 162 (2000) 335-352

www.elsevier.com/locate/molcata

Adsorption and reactions of CH₃Cl on Mo₂C based catalyst

J. Cserényi*, L. Óvári, T. Bánsági, F. Solymosi

Institute of Solid State and Radiochemistry, University of Szeged and Reaction Kinetics Research Group of the Hungarian Academy of Sciences¹, P.O. Box 168, H-6701, Szeged, Hungary

Abstract

The adsorption of CH₃Cl on ZSM-5, Mo₂C/ZSM-5 and Mo₂C/SiO₂ was investigated by temperature-programmed desorption (TPD) and Fourier transform infrared spectroscopy (FTIR). The formation of methoxy species was clearly identified on all the three catalysts. Three elementary steps were considered to explain the absorption bands observed in the IR spectra and to describe the reaction products found at higher temperatures: (i) the interaction of CH₃Cl with the OH groups of ZSM-5, (ii) dissociation of CH₃Cl yielding CH₃, and (iii) the elimination of HCl from the adsorbed CH₃Cl to give CH₂ species. A new finding was the identification of the alkenyl carbocation formed on the Lewis acidic sites of ZSM-5. The decomposition of CH₃Cl on ZSM-5 proceeded at 673 K with a high conversion yielding propylene, ethylene, butane, methane and benzene in decreasing selectivities. Deposition of Mo₂C on ZSM only slightly modified the catalytic behavior of ZSM-5. Its promoter effect came into prominence on silica surface. © 2000 Published by Elsevier Science B.V.

Keywords: Adsorption and reactions; CH₃Cl; Mo₂C-based catalyst

1. Introduction

The catalytic conversion of methane into more valuable compounds has been the subject of intensive research during the last two decades. One of the ways is to convert methane to methyl chloride via oxychlorination reaction [1,2], and then transform methyl chloride into light olefins and hydrochloric acid [3,4]. Pure and modified ZSM-5 is an effective catalyst for CH₃C1 reaction, the product distribution sensitively depends on the reaction temperature and on the nature of the promoters [5–8].

Recently, it was found that Mo_2C deposited on the cavities of ZSM-5 is an active catalyst in the direct conversion of methane into benzene [9–12]. The same results were observed when the starting material was $MoO_3/ZSM-5$ [13–15], as MoO_3 was converted into Mo_2C during the high temperature reaction [9–12]. It was thought that the primary role of Mo_2C is to activate methane to produce CH_3 and/or CH_2 species and then — through their coupling — ethane and/or ethylene. The oligomerization and aromatization of these compounds proceed on the ZSM-5. In the subsequent studies, it was found that Mo_2C also exerts a promoting influence even on the aromatization of ethane and propane, which occurs readily on ZSM-5 [16,17].

In the present work, an attempt is being made to examine the effect of Mo_2C on the interaction and

^{*} Corresponding author.

¹ These laboratories are parts of the Center for Catalysis, Surface and Material Science at the University of Szeged.

^{1381-1169/00/\$ -} see front matter © 2000 Published by Elsevier Science B.V. PII: S1381-1169(00)00301-0

reaction of CH_3C1 with ZSM-5. It is hoped that the results obtained may also contribute to the better understanding of the aromatization of methane on this catalyst.

2. Experimental

Catalytic reactions were carried out at 1 atm of $CH_{2}Cl + Ar$ gas mixture containing 5% of $CH_{2}Cl$ in a fixed-bed, continuous flow reactor consisting of a quartz tube (10 mm i.d.) connected to a capillary tube. The flow rate was 12 ml/min. Generally, 0.5 g of loosely compressed catalyst sample was used. Reaction products were analyzed by means of a Hewlett-Packard 5890 gas chromatograph using a Porapak OS column. The conversion of CH₂Cl was calculated from the hydrogen balance. The selectivity values of product formation represent the fraction of methyl chloride that has been converted into specific products, taking into account the number of carbon atoms in the molecules. The decomposition of CH₃Cl was also followed in a closed circulation system, where the analysis of products was performed by a mass spectrometer.

Infrared spectroscopic measurements were made in a vacuum IR cell using self-supporting wafers of catalyst powders. Spectra were recorded with a Biorad (Digilab. Div.) Fourier transform IR spectrometer FTS 155.

The H-ZSM-5 support was obtained by five times repeated ion exchange of Na-ZSM-5 (Si/Al = 55.0) with an aqueous solution of ammonium nitrate (1N), and calcined in air at 863 K for 5 h. Before catalytic measurements, each sample was oxidized in an O₂ stream at 973 K in situ and then flushed with Ar for 15 min. Hexagonal Mo₂C was prepared by the method of Lee et al. [18]. Briefly, about 0.5 g of MoO₃ was heated in 1:4 methane–H₂ mixture flowing at 300 ml (STP)/min in a quartz cell with two stopcocks. Preparation temperature was increased rapidly to 773 K and at 30 K/h between 773 and 1023 K, and maintained at 1023 K for 3 h.

Supported Mo_2C was produced by the carburation of supported MoO_3 in the catalytic reactor, in a similar way as described above for the preparation of bulk Mo_2C . $MoO_3/ZSM-5$ and MoO_3/SiO_2 were prepared by impregnating the supports with a basic solution of ammonium paramolybdate to yield a nominal 2 wt.% of MoO_3 . The suspension was dried at 373 K and calcined at 873 K for 5 h. Following the suggestion of Lee et al. [18], the sample was deactivated at 300 K with air, or used in situ for catalytic studies. As Mo_2C always contains excess carbon, the catalytic measurements to remove this carbon species. The gases used were of commercial purity (Linde). Ar (99.996%) and H₂ (99.999%) were deoxygenated with an oxytrap. The other impurities were adsorbed by a 5A molecular sieve at the temperature of liquid nitrogen.

3. Results

3.1. Adsorption of CH_3Cl

3.1.1. Temperature-programmed desorption (TPD) measurements

The interaction of CH₃Cl with the above catalysts has been first studied by means of TPD. A 0.5-g catalyst sample was kept in CH₃Cl flow at 373 K for 10 min, afterwards, the reactor was washed with argon until no or only traces of CH₃Cl was detected in the outlet gas; this required about 60 min. TPD spectra are shown in Fig. 1. CH₃Cl desorbed from the ZSM-5 with a peak temperature $T_p = 393$ K. Methane and hydrogen were released only above 700 K. Similar features have been observed for the Mo₂C/ZSM-5 sample. The amount of CH₃Cl desorbed was somewhat less, but the peak temperature was the same. At the same time, however, the formation of methane ($T_p = 420$ K), ethylene ($T_p = 550$ K) and propane was observed.

3.1.2. Infrared spectroscopic measurements

The ZSM-5 sample exhibited the usual absorption bands at 3744, 3679 and 3612 cm⁻¹. These bands are assigned to terminal Si–OH groups, Al–OH groups and acidic bridging hydroxyls, respectively. The deposition of Mo₂C onto ZSM-5 did not alter this picture, except that the intensity of the 3612 cm⁻¹ band has been reduced by about 40%.

Fig. 1. TPD spectra following the adsorption of CH₃Cl on (A) ZSM-5 and (B) Mo₂C/ZSM-5 samples at 373 K.

Fourier transform infrared spectroscopy (FTIR) spectra of adsorbed CH_3Cl on Mo_2C/ZSM -5 are shown in Fig. 2. Absorption bands observed at 2963, 2860, 1444 and 1350 cm⁻¹ correspond well to different vibrations of adsorbed CH_3Cl . The assignment of these bands is presented in Table 1. In the OH frequency region, reverse absorption bands devel-

oped at 3663 and 3612 cm⁻¹, and a broad band at 3175 cm⁻¹. Degassing the sample at room temperature resulted in the elimination of all bands, including the reverse absorption bands, indicating the weak interaction at 300 K. When the sample was kept in 10 Torr of CH₃Cl at 473 K and evacuated at 300 K, both reverse bands at 3663 and 3612 cm⁻¹ remained

Fig. 2. (a) FTIR spectra of Mo_2C/ZSM -5 in the presence of CH_3Cl (10 Torr) at 300 K (the spectrum of gas phase is subtracted), and after adsorption of CH_3Cl at 473 (b) and 573 K (c). In the latter two cases, the sample was degassed at 300 K.

Table 1 Characteristic	vibrations	of different adsort	bed species										
Assignments	CH ₃ Cl gas [22]	CH ₃ Cl Mo ₂ C/ ZSM-5 300 K ^a	CH ₃ Cl Mo ₂ C/ ZSM-5 473 K ^a	CH ₃ Cl Mo ₂ C/ SiO ₂ 473 K ^a	CH ₃ Mo ₂ C [20]	CH ₂ Mo ₂ C [19]	C ₂ H ₄ ZSM-5 153 K ^a	di-σ C ₂ H ₄ (4×4)-C/ Mo(110) [23]	CCH ₃ (4×4)-C/ Mo(110) [23]	di-σ propylene Pt∕SiO ₂ [24]	CH ₃ 0 SiO ₂ [27]	C ₂ H ₅ O SiO ₂ [26]	C ₃ H ₇ O TiO ₂ [25]
$\nu_{\rm as}({\rm CH}_3)$	3042	1	2958 (w)	2961 (m)	2930 (m)						3001 (w), 2961 (m)	2986 (s)	2965 (s)
$\nu_{\rm as}({ m CH}_2)$			2927 (w)			2940 (s)	3090	3010 (w)				2940 (m)	2940 (m)
$\nu_{\rm s}({\rm CH}_3)$	2966	2963 (w)	2901 (vw)	2859 (m)					2915 (s)	2885 (m)	2859 (m)	2911 (m)	2885 (s)
$\nu_{\rm s}({\rm CH}_2)$			2860 (w)				2975	2935(s)		2920 (ms)		2882 (w)	2855 (w)
2δ _{as} (CH ₃)	2879	2860 (w)		2939 (w)							2937 (w)		
$\nu(C=C)$			1539 (m)				1631, 1612						
$\nu_{\rm as}(\rm CCC)$			1509 (vs)										
$\delta_{\rm as}({\rm CH}_3)$	1455	1444 (m)	1458 (m)	1464 (w)	1370 (m)				1430 (m)	1465 (w)	1481 (w)	1452 (w)	
$\delta(CH_2)$			1470 (vs)				1441, 1340	1395 (s)				1492 (w)	1460 (m)
δ _s (CH ₃)	1355	1350 (s)	1383 (s)	1441 (w)	1180 (s)	780			1345 (m)	1350 (ms)	1466 (s)	1399(m)	1380 (m)
$\rho(\mathrm{CH}_2)$												1384 (m)	
$\omega(CH_2)$						1190 (m)		1180 (w)				1348 (m)	
$\nu(C-C)$									1075 (m)				
$\gamma({ m CH}_2)$								1035 (s)					

work.	
^a This	

Fig. 3. FTIR spectra of Mo_2C/SiO_2 following the adsorption of CH_3Cl at different temperatures. (a) 473; (b) 573 K; (c) 673 K and degassing at 300 K.

practically unchanged, which is in contrast with the room temperature adsorption. In addition, relatively intense absorption bands developed at 2958, 2927, 2901 and 2860 cm⁻¹ in the CH stretching region, and at 1539, 1509, 1470, 1458 and 1383 cm⁻¹ in the CH deformation mode. This suggests an activated adsorption of CH₃Cl. Further heating the sample in CH₃Cl to 573 and then to 673 K caused only a slight attenuation of the bands observed after degassing at room temperature. A noteworthy difference was the elimination of the band at 1539 cm⁻¹.

Similar measurements were performed with pure ZSM-5. IR spectra obtained in the presence of CH_3Cl at room temperature exhibited practically the same spectral features as measured for Mo₂C/ZSM-5. No change in the nature of the weak interaction was experienced at 300 K. Treating the sample with 10 Torr of CH_3Cl at different temperatures caused the appearance of the same bands as observed for Mo₂C/ZSM-5.

The adsorption of CH_3Cl on Mo_2C/SiO_2 produced much weaker bands than on the previous samples, and yielded no observable change in the intense OH band of silica at 3746 cm⁻¹. To produce absorption bands surviving room temperature adsorption, we had to keep the sample again in the presence of gaseous CH_3Cl at and above 473 K. In this case, bands were registered at 2961, 2939, 2859, 1446 and 1441 cm⁻¹. The spectra are shown in Fig. 3. We observed a slight enhancement of these bands with the increase of the adsorption temperature, without

changing their positions. New bands appeared at 2979 and 1388 cm⁻¹ after treating the Mo_2C/SiO_2 sample with CH₃Cl at 673 K. The peaks observed at 473 K for Mo_2C/SiO_2 also appeared on the IR spectrum of pure silica, but with much less intensities. The difference is that the 2939 and 1446 cm⁻¹ bands are missing, and the bands at 2979 and 1388 cm⁻¹ did not develop at 673 K.

3.2. Catalytic decomposition of CH₃Cl

3.2.1. Measurements in closed system

The reaction of CH_3Cl was first studied in a closed circulation system using a mass spectrometric analysis. A well measurable decomposition of CH_3Cl on Mo_2C/SiO_2 occurred above 650 K. The main

Fig. 4. Decomposition of CH₃Cl on Mo₂C/ZSM-5 (x), Mo₂C/SiO₂ (\blacklozenge) ZSM-5 (\blacklozenge) and SiO₂ (\blacktriangle) at 743 K followed by mass spectrometric analysis. Conversion of CH₃Cl (A), formation of HCl (B), C₂H₄ (C) and CH₄ (D).

products were CH₄, C₂H₄ and HCl. At 743 K, the CH₄/C₂H₄ ratio is in the range of 4.5–4.9. Note that silica support is practically inactive towards the decomposition of CH₃Cl. On the other hand, ZSM-5 alone is quite an effective catalyst yielding the same products: the CH₄/C₂H₄ ratio varied between 1.0–1.2. The deposition of Mo₂C on ZSM-5 in highly dispersed state caused only little promoting effect both for the conversion and product distribution. The CH₄/C₂H₄ ratio was about 3.2. The conversion of CH₃Cl and the formation of products on different samples are displayed in Fig. 4.

3.2.2. Flow system

More detailed measurements have been carried out in a flow system. At 673 K, the extent of the decomposition attained a value of 92-93% for ZSM-5 and 72-73% for Mo₂C/ZSM-5. Both samples exhibited constant activity. The products in decreasing selectivities are propylene, butane, ethylene, methane and benzene. Ethane and propane were detected only in trace amounts. Results are collected in Table 2. The differences between the two samples are that more methane and benzene formed on the Mo₂C-containing ZSM-5. The effect of Mo₂C was more pronounced when it was deposited on silica, which was practically inactive at 673 K. In this case, the initial conversion was 4.2%, which slowly decreased to 1.2%. The product distribution basically differed from that observed for the previous samples: the selectivity to methane was 77% followed by

Table 2

Conversion of CH_3Cl and selectivities for various products on different catalyst at 673 K

	ZSM-5	Mo ₂ C/ ZSM-5	Mo ₂ C/ SiO ₂
Conversio	n %		
	92.5	72.5	4.2
Selectiviti	es %		
CH_4	1.0	5.0	77.0
$C_2 H_4$	16.0	17.0	18.0
C_2H_6	_	_	_
$\tilde{C_3H_6}$	54.0	53.0	4.0
C ₃ H ₈	-	_	_
C ₄ 'S	26.0	17.0	_
C ₆ H ₆	0.5	5.0	_

ethylene (18%) and propylene (4%). Note that the decomposition of CH_3Cl on pure Mo_2C in a flow system amounts only to 0.03–0.04% at 673 K.

4. Discussion

4.1. Reactivities of $C_{x}H_{y}$ fragments on $Mo_{2}C$

For the interpretation of the results obtained, it is helpful to summarize the main characteristics of different hydrocarbon fragments on Mo₂C surface. Recently, we examined the adsorption and dissociation of CH₂I₂, CH₃I and C₂H₅I on Mo₂C and the reaction pathways of the hydrocarbons formed [19,20]. Whereas CH₂ and CH₃ underwent fast decomposition on Pt metals producing only minor quantities of C_2 compounds [21] on Mo₂C, the tendency of the coupling of CH₂ and CH₃ was much greater than on these metals. Surprisingly, the formation of C_2H_4 also occurred in the reaction of CH_3 on Mo₂C, which was not detected at all for Pt metals [21]. In contrast with this, the reaction of C_2H_5 did not differ much on Pt metals and Mo₂C [20]: the C-C bond remained intact on both types of solids.

4.2. TPD and IR spectroscopic studies

TPD measurements showed that following the adsorption of CH_3Cl on ZSM-5 at 373 K, a fraction of it remained adsorbed and was released with a $T_p = 393$ K. The presence of Mo_2C did not influence this peak temperature, suggesting that most of the CH_3Cl adsorbed on the ZSM-5. That fact that the desorbing amount of CH_3Cl somewhat decayed shows that Mo_2C blocks some of the adsorption sites on the ZSM-5. In addition, the formation of other products was clearly enhanced by the presence of Mo_2C . This feature indicates that Mo_2C can induce the dissociation of CH_3Cl at such a low temperature, where ZSM-5 alone is not effective.

IR spectroscopic measurements suggest that CH_3Cl adsorbs molecularly on all the three samples, ZSM-5, Mo_2C/ZSM -5 and Mo_2C/SiO_2 at 300 K. Absorption bands detected are readily assigned to the vibrations of adsorbed CH_3Cl [22] (Table 1). All

these bands were eliminated after evacuation at room temperature indicating the weakness of the adsorption. At and above 473 K, however, the nature of the adsorption basically altered. This was first exhibited by the development of reverse bands at 3669 and 3612 cm^{-1} in the OH frequency region for $Mo_{2}C/ZSM-5$ and ZSM-5, and the appearance of stable absorption bands at 2958, 2927, 2901, 2860, 1539, 1509, 1470, 1458 and 1383 cm⁻¹ (Fig. 2). In order to facilitate the interpretation of these spectral features, the characteristic bands of all compounds possibly formed are collected in Table 1. As spectra measured after the adsorption of CH₂Cl on ZSM-5 and Mo₂C/ZSM-5 at 473 K and subsequent evacuation at room temperature were almost identical, we can say that surface species originating these bands are bonded to the zeolite surface. It is important to point out that the intense band of CH₂Cl at 1350 cm^{-1} is missing from the spectra taken at elevated temperatures, suggesting that intact CH₃Cl did not remain on the surface. The reverse bands at 3669 and 3612 cm^{-1} unambiguously show the occurrence of a surface process between the OH groups of the zeolite and adsorbed CH₃Cl

$$CH_{3}Cl_{(a)} + OH_{(a)} = CH_{3}O_{(a)} + HCl_{(g)}$$
 (1)

Similar spectral changes were found for acidic zeolite, HY-FAU, but were not observed for basic sample, Na/NaY-FAU [28]. The formation of methoxy species has been identified by IR spectroscopy following the adsorption of CH₂Cl on a number of oxides [29,30]. Its production was also established on Pd/SiO₂ after the activation of CH₃Cl by palladium [31], and in the direct interaction of CH_3 stream with Rh/SiO₂, SiO₂ and TiO₂ [32,33]. Accepting this consideration, the bands at 2958 and 2860 cm^{-1} can be attributed to the $v_{as}(CH_3)$ and $v_s(CH_3)$ modes, whereas the bands at 1470 and 1458 cm⁻¹ to the $\delta_{as}(CH_3)$ and $\delta_{s}(CH_3)$ in CH₃O. The more characteristic band at 1060 cm⁻¹ due to the vibration of ν (CO) in methoxy is missing, but the detection of this band on zeolite and silica is extremely difficult.

In addition to the above process, we can also consider two other elementary reactions, the elimination of HCl

$$CH_3Cl_{(a)} = CH_{2(a)} + HCl_{(a)}$$
⁽²⁾

and the cleavage of Cl-C bond

$$CH_{3}Cl_{(a)} = CH_{3(a)} + Cl_{(a)}$$
 (3)

The formation of both the CH_3 and the CH_2 species was observed in the dissociation of the corresponding iodo compounds on $Mo_2C/Mo(100)$ surface in UHV system [19,20]. They existed on the surface up to 250–300 K. IR spectra presented in Fig. 2 also suggest that they have been converted into other surface species after their formation, which is consistent with their high reactivity.

Accordingly, we can count with the coexistence of two or more adsorbed species on the surface at and above 473 K. The primary products of the coupling of CH₃ and CH₂ are ethane and ethylene. From these two compounds, ethylene forms a stable adsorbed species on the catalyst surface. However, on Mo₂C/Mo(100), even the more stable di- σ bonded ethylene has been transformed into ethylidyne in the temperature range of 260–350 K [23]. The absence of absorption bands at 1430 and 1345 cm⁻¹ due to $\delta_{as}(CH_3)$ and $\delta_{sym}(CH_3)$ of ethylidyne excludes its formation in the present case. Note that neither di-\sigma-bonded ethylene nor ethylidyne exists on ZSM-5. We can also consider the formation of adsorbed ethoxy, which could be a surface intermediate in the production of ethylene from CH₃Cl [8], as described in Scheme 1.

As we identified propylene in the products of the catalytic transformation of CH_3Cl , we propose the

insertion of a second carbene to ethoxy to give adsorbed propoxide, the decomposition of which yields propylene

On the basis of broad absorption in the frequency range between 2800 and 3000 cm^{-1} (Fig. 2), as well as on that of the vibration data of Table 2, we cannot exclude the contribution of vibrations of ethoxy and propoxy surface complexes to the observed absorption bands.

However, neither of the adsorbed species assumed so far explains the origin of the intense band at 1509 cm⁻¹, which was detectable up to 573 K. This band has been identified following the adsorption of methanol and alkenes on protonic zeolites in a number of cases [34], and was attributed to the ν_{as} (C–C– C) stretching mode of alkenyl carbocations having an extremely high extinction coefficient [34]. In the present case, its formation could occur in the strong interaction of propylene with the Lewis acidic sites (L) of ZSM-5

$$C_{3}H_{6(a)} + L \rightarrow L - H^{-} + C_{3}H_{5(a)}^{+}$$
 (7)

Control measurements confirmed this assumption, as exposing ZSM-5 to propylene at and above 473 K, a strong absorption band developed at 1509 cm⁻¹, which was eliminated only at 623 K.

The adsorption of CH_3Cl on Mo_2C/SiO_2 is also molecular and reversible at 300 K. A stronger interaction was measured only at and above 473 K, when absorption bands at 2961, 2939, 2859, 1464 and 1441 cm⁻¹ remained on the spectrum after room temperature evacuation. These bands can be attributed to the different vibrations of methoxy species (Table 2). On pure SiO_2 , the intensities of absorption bands, particularly in the low frequency regions, were much weaker, and the band at 1441 cm^{-1} was even missing. This suggests that the formation of methoxy on silica is promoted by Mo₂C. It is very likely that CH₃Cl dissociates on Mo₂C (Eq. 3), and the CH₃ formed migrates onto silica to give CH₃O. This way of methoxy formation was proposed first in the case of Pd/SiO_2 [31].

It is important to emphasize that we could not detect an absorption band at 1509 cm⁻¹ for this sample under any experimental conditions. This is consistent with the consideration presented for the assignment of this band. For the formation of carbocations, the presence of surface acid centers is a prerequisite. Due to lack of this center on Mo_2C/SiO_2 , carbocations cannot be produced.

4.3. Catalytic decomposition

Studies performed in closed circulation system clearly showed that Mo_2C deposited onto SiO_2 catalyzes the decomposition of CH_3Cl . This was confirmed by the results obtained in a flow system, where the main products of the reaction were methane and ethylene, with a small amount of propylene. In this case, the main role of Mo_2C is to initiate the dissociation of CH_3Cl to produce CH_3 surface species. As was mentioned above, Mo_2C is less reactive towards the complete decomposition of hydrocarbon fragments as compared to highly dispersed Pt metals, nevertheless, it also promotes their decomposition to surface carbon

$$CH_{3(a)} = CH_{2(a)} + H_{(a)}$$
 (8)

$$CH_{2(a)} = C_{(a)} + H_{2(g)}$$
 (9)

and the formation of methane. This latter reaction may occur in the hydrogenation of CH_x species or in the disproportionation of CH_3

$$4CH_{3(a)} = 3CH_{4(g)} + C_{(a)}$$
(10)

In addition, we may also count with the decomposition of ethylene on Mo₂C surface.

The situation was different on ZSM-5, which itself is an effective catalyst for the conversion of CH₃Cl into C₂-C₄ compounds [5–8]. The formation of these compounds are described by the Eqs. 4–6. We expected that due to the promoting effect of Mo₂C on the dissociation of CH₃Cl (Eq. 3), a new route is opened for the production of carbene, CH₂, which, reacting with methoxy species, yields ethylene. This expectation was, however, only partially fulfilled as the decomposition of CH₃Cl occurred at somewhat lower temperature on Mo₂C-doped ZSM-5 as compared to undoped ZSM-5. But at higher temperature, when ZSM-5 is active in the transformation of CH₃Cl into other compounds, the effect of Mo₂C could not come in prominence. when methoxy species and alkene carbocation were identified by IR spectroscopy. (ii) The catalytic decomposition of CH₃Cl proceeded with well measurable rate at and above 673 K yielding propylene, ethylene, butane, methane and benzene in decreasing selectivities. The formation of these products is described by the transient appearance of ethoxide and propoxide. (iii) Mo₂C only slightly influences the processes occurring on the active ZSM-5 catalyst. (iv) Its catalytic effect was exhibited in the case of Mo₂C/SiO₂ when it promoted the cleavage of C–Cl bond in the CH₃Cl.

Acknowledgements

This work was supported by the OTKA F025610.

Appendix

(i) CH_3Cl adsorbs reversibly on ZSM-5 at 300 K. Stronger interaction occurred at and above 473 K,

Numerical data, together with product analyses for each individual measurements plotted in Figs. 1 and 2 are compiled in Tables A1–A16 below.

Table A1

5. Conclusions

Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 9.00

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	0.115	0.059	0.000	0.054	-0.002
-4.824	_	0.140	0.099	0.000	0.084	0.043
-3.824	_	0.161	0.138	0.000	0.046	0.023
-3.312	-	0.295	0.238	0.000	0.115	0.058
-2.824	-	0.633	0.536	0.000	0.190	0.093
-2.312	-	1.081	0.616	0.195	0.557	0.287
-1.824	_	1.642	0.736	0.347	1.129	0.570
-1.312	-	1.687	0.855	0.252	1.115	0.535
-0.824	-	1.528	1.133	0.298	0.186	0.089
-5.824	-5.824	0.037	0.019	0.000	0.018	0.000
-4.824	-4.824	0.084	0.059	0.000	0.050	0.025
-3.824	-3.824	0.408	0.298	0.031	0.135	0.056
-3.312	-3.312	0.883	0.516	0.090	0.553	0.276
-2.824	-2.824	1.309	0.357	0.778	0.376	0.202
-2.312	-2.312	2.005	0.059	1.507	0.899	0.460
-1.824	-1.824	0.748	0.099	0.654	0.034	0.038
-0.824	-0.824	0.113	-0.100	0.213	0.000	0.000

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	-	0.178	0.178	0.000	0.055	0.055
-4.824	-	0.666	0.516	0.012	0.270	0.132
-3.824	_	1.573	1.054	0.465	0.128	0.074
-3.312	-	1.758	1.153	0.332	0.517	0.244
-2.824	_	1.808	1.134	0.364	0.617	0.307
-2.312	-	1.861	1.213	0.288	0.706	0.346
-1.824	_	1.935	1.332	0.224	0.733	0.354
-1.312	-	1.448	0.847	0.125	0.746	0.270
-0.824	_	1.078	0.716	0.186	0.284	0.108
-5.824	-5.824	0.068	0.059	0.000	0.009	0.000
-4.824	-4.824	0.348	0.206	0.097	0.120	0.075
-3.824	-3.824	1.200	0.437	0.475	0.582	0.289
-3.312	-3.312	1.668	0.537	0.933	0.423	0.225
-2.824	-2.824	2.125	0.457	1.040	1.206	0.578
-2.312	-2.312	0.310	-0.001	0.166	0.263	0.119
-1.824	-1.824	0.088	-0.028	0.000	0.117	0.001
-0.824	-0.824	0.123	-0.100	0.000	0.222	-0.001

Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 7.01

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

Table A3 Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 6.38

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.204	_	0.302	0.281	0.000	0.017	-0.004
-4.204	_	0.867	0.676	0.043	0.283	0.135
-3.903	-	0.950	0.636	0.112	0.344	0.138
-3.505	-	1.217	0.815	0.222	0.356	0.176
-3.204	_	1.540	1.412	0.149	0.001	0.022
-2.903	-	1.818	1.213	0.383	0.426	0.209
-2.505	_	2.175	1.451	0.326	0.739	0.341
-2.204	-	2.682	1.651	0.623	0.799	0.391
-1.903	-	2.035	1.293	0.553	0.351	0.162
-1.602	-	1.678	0.616	0.679	0.768	0.385
-5.204	-5.248	0.114	0.079	0.035	0.002	0.002
-4.509	-4.549	0.435	0.298	0.116	0.043	0.022
-4.204	-4.248	0.741	0.377	0.309	0.704	0.649
-3.903	-3.947	1.034	0.377	0.466	0.397	0.206
-3.505	-3.549	1.384	0.377	0.658	0.750	0.401
-2.903	-2.947	2.037	0.258	1.716	0.115	0.052
-2.505	-2.549	1.099	0.178	0.841	0.160	0.080
-2.204	-2.248	0.170	-0.028	0.274	0.000	0.076
-1.903	-1.947	0.098	-0.100	0.165	0.000	-0.033

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	0.093	0.087	0.000	0.013	0.007
-4.824	-	0.494	0.461	0.000	0.067	0.034
-3.824	_	1.056	0.895	0.063	0.198	0.100
-3.312	-	1.449	0.915	0.184	0.676	0.326
-2.824	_	2.087	1.197	0.576	0.628	0.314
-2.312	-	2.649	1.169	0.903	1.192	0.615
-1.824	_	3.233	1.929	1.256	0.086	0.038
-1.312	_	2.671	1.248	0.693	1.452	0.722
-0.824	-	2.183	1.531	0.411	0.502	0.261
-5.824	-5.824	0.077	0.059	0.000	0.039	0.021
-4.824	-4.824	0.189	0.138	0.000	0.096	0.045
-3.824	-3.824	0.795	0.457	0.111	0.453	0.226
-3.312	-3.312	1.370	0.457	0.490	0.852	0.429
-2.824	-2.824	2.290	0.387	1.419	0.981	0.497
-2.312	-2.312	3.327	0.417	2.187	1.468	0.745
-1.824	-1.824	3.470	-0.100	3.566	0.000	-0.004
-1.312	-1.312	2.008	-0.100	2.108	0.000	0.000
-0.824	-0.824	0.887	-0.100	0.987	0.000	0.000

Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 4.50

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

Table A5 Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 3.00

-						
log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2 (mmol)
- 5.824	_	0.111	0.099	0.000	0.024	0.012
-4.824	_	0.226	0.178	0.000	0.095	0.047
-3.824	_	0.732	0.616	0.000	0.229	0.113
-3.312	-	1.149	0.855	0.100	0.409	0.215
-2.824	-	1.568	1.193	0.268	0.202	0.095
-2.312	_	1.873	1.173	0.471	0.439	0.210
-1.824	-	2.098	1.551	0.459	0.173	0.085
-1.312	-	2.176	1.492	0.560	0.145	0.021
-0.824	_	2.069	1.153	0.742	0.349	0.175
-5.824	-5.824	0.100	0.091	0.000	0.0090	0.000
-4.824	-4.824	0.252	0.258	0.000	0.000	0.006
-3.824	-3.824	0.670	0.537	0.036	0.218	0.121
-2.824	-2.824	1.712	0.537	0.902	0.598	0.325
-2.312	-2.312	3.056	0.557	2.377	0.241	0.119
-1.824	-1.824	4.445	-0.100	3.960	1.139	0.554
-1.568	-1.568	3.948	-0.100	4.032	0.000	-0.016
-1.312	-1.312	3.651	-0.100	3.738	0.000	-0.013
-0.824	-0.824	1.760	-0.100	1.854	0.000	-0.006

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.522	_	0.154	0.139	0.000	0.015	0.000
-5.000	-	0.295	0.258	0.000	0.076	0.039
-4.522	-	-0.689	0.497	0.199	0.002	0.009
-4.000	-	1.172	0.974	0.198	0.003	0.003
-3.522	-	1.283	0.935	0.371	0.007	0.030
-3.000	-	1.469	1.094	0.381	0.000	0.006
-2.522	-	1.619	0.895	0.407	0.682	0.365
-2.000	-	1.857	1.213	0.552	0.178	0.086
-1.520	-	1.520	1.332	0.201	0.004	0.017
-1.000	-	1.367	0.895	0.466	0.010	0.004
-6.000	-5.504	0.043	0.035	0.000	0.009	0.001
5.522	-5.027	0.069	0.051	0.000	0.018	0.000
-5.000	-4.504	0.141	0.099	0.034	0.006	-0.002
-4.522	-4.027	0.204	0.138	0.000	0.057	-0.009
-4.000	-3.504	0.368	0.258	0.113	0.000	0.003
-3.522	-3.027	0.859	0.317	0.429	0.224	0.111
-2.522	-2.027	2.426	0.258	1.437	1.505	0.774
-2.000	-1.504	3.168	0.059	2.527	1.190	0.608
-1.522	-1.027	3.808	-0.001	2.481	2.578	1.250
-1.240	-0.744	3.946	-0.068	2.945	2.091	1.022
-1.000	-0.504	3.725	-0.100	2.963	1.698	0.836

Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 4.50

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

Table A7 Dependence of the oxidation of tetralin with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 3.62

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.522	_	0.329	0.298	0.027	0.003	-0.001
-5.000	-	0.519	0.417	0.036	0.077	0.011
-4.522	-	0.639	0.616	0.023	0.019	0.019
-4.000	-	0.811	0.696	0.065	0.061	0.011
-3.488	-	1.320	0.895	0.209	0.436	0.220
-3.000	-	1.945	1.332	0.586	0.053	0.026
-2.698	-	2.392	1.512	0.606	0.576	0.302
-2.000	-	1.642	1.253	0.386	0.000	-0.003
-1.488	-	1.379	0.656	0.630	0.197	0.104
-1.000	-	1.119	0.616	0.499	0.003	-0.001
-5.509	-4.995	0.103	0.103	0.000	0.007	0.007
-4.509	- 3.995	0.279	0.274	0.067	0.000	0.062
-3.509	-2.995	0.768	0.470	0.334	0.000	0.036
-2.986	-2.472	1.405	0.429	0.980	0.040	0.105
-2.509	- 1.995	2.238	0.449	1.684	0.057	-0.048
-2.204	-1.705	2.810	0.298	2.505	0.002	-0.005
-1.903	-1.404	3.288	0.218	3.068	0.002	0.000
-1.426	-0.927	4.011	-0.100	4.116	0.000	0.005
-1.225	-0.726	3.824	-0.100	3.885	0.000	-0.039
-0.924	-0.407	3.493	-0.100	3.600	0.000	0.007

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

log[ALCl]	$\log[AL-V(V)]$	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [T-one] (mmol)	Δ [T-ol] (mmol)	Σ [products] – ΔO_2
- 5.435	_	0.223	0.206	0.020	0.003	0.006
-4.912	-	0.310	0.206	0.008	0.076	-0.020
-4.435	_	0.466	0.410	0.050	0.005	-0.001
-3.912	-	0.789	0.756	0.042	0.000	0.009
-3.435	-	1.210	0.879	0.308	0.007	-0.016
-2.912	_	1.875	1.368	0.467	0.067	0.027
-2.690	-	1.950	1.572	0.349	0.011	-0.018
-2.312	-	1.859	1.286	0.580	0.008	0.015
-2.096	-	1.609	1.368	0.197	0.023	-0.021
-1.903	-	1.145	0.858	0.253	0.020	-0.014
-1.602	-	0.599	0.470	0.098	0.029	-0.002
-5.440	-4.923	0.112	0.144	0.000	0.000	0.032
-4.440	-3.923	0.291	0.286	0.027	0.008	0.030
-3.903	-3.403	0.426	0.258	0.163	0.000	-0.005
-3.440	-2.923	0.762	0.516	0.100	0.084	-0.062
-2.917	-2.400	0.942	0.510	0.221	0.445	0.234
-2.315	-1.798	1.842	0.449	1.376	0.033	0.016
-1.950	-1.440	2.449	0.532	1.980	0.000	0.013
-1.602	-1.102	3.253	0.178	2.116	1.732	0.767
-1.397	-0.898	3.590	0.079	2.510	1.939	0.938
-1.225	-0.730	3.812	-0.100	3.918	0.000	0.006
-0.924	-0.424	3.717	-0.100	3.822	0.000	0.005

Dependence of the oxidation of tetralin with O₂ on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 3.00

Conditions: 2.759 M tetralin + 0.0125 M t-BHP + the corresponding catalyst dissolved in 8.00 cm³ chlorobenzene.

Table A9 Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 9.00

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	0.461	0.457	0.010	0.000	0.006
-4.824	-	0.901	0.895	0.044	0.000	0.038
-3.824	-	1.154	0.994	0.035	0.118	-0.007
-3.312	-	1.657	1.412	0.035	0.204	-0.006
-2.824	-	2.194	1.691	0.055	0.447	-0.001
-2.312	-	2.257	1.571	0.162	0.518	-0.006
-1.824	-	2.314	1.392	0.055	0.876	0.009
-1.312	-	2.235	1.571	0.059	0.589	-0.016
-0.824	-	2.172	1.133	0.038	1.002	0.001
-5.824	-5.824	0.360	0.337	0.019	0.020	0.016
-4.824	-4.824	0.562	0.516	0.061	0.030	0.045
-3.824	-3.824	1.017	0.417	0.171	0.458	0.029
-3.312	-3.312	1.097	0.147	0.315	0.612	-0.023
-2.824	-2.824	1.424	0.099	0.361	0.942	-0.022
-2.312	-2.312	2.317	0.059	0.416	1.810	-0.032
-1.824	-1.824	3.365	0.019	0.371	2.910	-0.065
-1.678	-1.678	3.566	-0.001	0.282	3.290	0.005
-1.569	-1.569	3.220	-0.020	0.231	3.005	-0.004
-1.312	-1.312	2.013	-0.060	0.383	1.675	-0.015
-0.824	-0.824	0.121	-0.100	0.010	0.216	0.005

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	0.895	0.815	0.032	0.085	0.037
-4.824	-	1.756	1.492	0.065	0.215	0.016
-3.824	-	2.025	1.432	0.114	0.489	0.010
-3.312	_	2.304	1.452	0.102	0.767	0.017
-2.824	-	2.578	1.630	0.090	0.846	-0.012
-2.312	-	2.697	1.531	0.096	1.132	0.062
-1.824	-	2.614	1.690	0.080	0.817	-0.027
-0.824	_	2.142	1.332	0.056	0.800	0.046
-5.824	-5.824	1.261	1.094	0.242	0.000	0.075
-4.824	-4.824	1.400	0.895	0.274	0.221	-0.010
-3.824	- 3.824	1.596	0.218	0.402	0.966	-0.010
-3.312	-3.312	1.838	0.059	0.404	1.358	-0.017
-2.824	-2.824	2.409	0.099	0.516	1.794	0.000
-2.568	-2.568	3.100	0.051	0.347	2.709	0.007
-2.312	-2.312	3.807	-0.021	0.238	3.636	0.046
-2.195	-2.195	3.356	-0.032	0.240	3.170	0.022
-2.064	-2.064	2.948	-0.061	0.238	2.741	0.001
-1.824	-1824	0.841	-0.020	0.133	0.726	-0.002
-1.312	-1.312	0.195	-0.100	0.014	0.283	0.002
-0.824	-0.824	0.131	-0.100	0.023	0.225	0.017

Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 7.01

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

Table A11 Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 6.38

log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.505	_	0.599	0.556	0.022	0.029	0.008
-5.204	_	0.935	0.934	0.043	0.000	0.042
-4.509	_	1.774	1.691	0.067	0.046	0.030
-4.204	-	2.257	1.850	0.095	0.328	0.016
-3.903	-	2.533	1.929	0.121	0.485	0.002
-3.204	_	2.814	1.770	0.254	0.783	-0.007
-2.903	-	2.847	1.909	0.114	0.810	-0.014
-2.204	-	3.002	1.810	0.102	1.080	-0.010
-1.903	_	3.035	1.730	0.176	1.123	-0.006
-1.602	-	2.712	1.531	0.108	1.053	-0.020
-0.999	_	2.059	1.531	0.099	0.428	-0.001
-5.505	- 5.549	0.677	0.668	0.052	0.000	0.043
-4.509	-4.549	0.953	0.537	0.238	0.156	-0.022
-4.204	-4.248	0.969	0.198	0.319	0.435	-0.017
-3.903	-3.947	1.051	0.138	0.300	0.608	-0.005
-3.505	-3.549	1.482	0.059	0.507	0.811	-0.105
-3.204	-3.248	1.827	0.051	0.362	1.407	-0.007
-2.903	-2.947	2.444	0.039	0.470	1.927	-0.008
-2.505	-2.549	3.400	0.011	0.271	3.128	0.010
-2.204	-2.248	2.816	-0.068	0.157	2.720	-0.007
-2.028	-2.072	2.373	-0.076	0.245	2.190	-0.014
-1.903	-1.947	0.489	-0.068	0.042	0.544	0.029

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalyst dissolved 8.00 cm³ chlorobenzene.

I						
log[ALCl]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	0.839	0.815	0.005	0.013	-0.006
-4.824	_	1.402	1.372	0.047	0.000	0.017
-3.824	_	1.770	1.472	0.024	0.205	-0.069
-3.312	_	2.079	2.048	0.064	0.000	0.033
-2.824	_	2.409	1.466	0.032	0.912	0.001
-2.312	_	2.461	1.730	0.085	0.640	-0.006
-1.824	_	2.675	1.466	0.034	1.116	-0.059
-1.312	_	2.624	1.691	0.066	0.848	-0.019
-0.824	-	2.511	1.691	0.030	0.779	-0.011
- 5 824	- 5 824	0.623	0.616	0.024	0.000	0.017
-5 312	-5312	0.880	0.815	0.042	0.000	0.004
-4.824	-4.824	1 094	0.895	0.042	0.127	-0.005
-4 312	-4 312	1 203	0.815	0.122	0.268	0.002
-3.824	-3.824	1.223	0.338	0.325	0.552	-0.008
-3.312	-3.312	1.705	0.118	0.520	1.052	-0.015
-2.824	-2.824	2.755	0.059	0.446	2.151	-0.099
-2.312	-2.312	3.908	-0.061	0.397	3.581	0.009
-1.824	-1.824	4.760	-0.100	0.214	4.641	-0.005
-1.312	-1.312	3.240	-0.100	0.071	3.267	-0.002
-0.824	-0.824	1.864	-0.100	0.045	1.918	-0.001

Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 4.50

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

Table A13 Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 3.00

log[ALC1]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.824	_	1.086	0.994	0.015	0.091	0.014
-5.312		1.717	1.472	0.005	0.224	-0.016
-4.824	_	2.303	1.491	0.059	0.779	0.016
-3.824	_	2.522	1.507	0.060	0.940	-0.15
-3.312	_	2.739	2.248	0.072	0.422	0.003
-2.824	_	3.081	1.969	0.134	0.985	0.007
-2.312	_	2.948	2.566	0.046	0.327	-0.009
-1.824	_	2.880	1.663	0.068	1.157	0.008
-1.312	_	2.833	1.790	0.039	1.005	0.001
-0.824	_	2.767	1.468	0.050	1.248	-0.001
-5.824	-5.824	0.968	0.755	0.044	0.190	0.021
-5.312	-5.312	1.379	0.994	0.234	0.150	-0.001
-4.824	-4.824	1.834	1.094	0.189	0.543	-0.008
-3.824	-3.824	2.032	0.576	0.399	1.061	0.004
-3.312	-3.312	2.259	0.218	0.514	1.513	-0.014
-2.824	-2.824	2.935	0.039	0.351	2.514	-0.031
-2.569	-2.569	3.956	-0.040	0.546	3.400	-0.050
-2.312	-2.312	4.937	-0.060	0.605	4.359	-0.033
-2.064	-2.064	5.240	-0.060	0.421	4.863	-0.016
-1.824	-1.824	4.890	-0.080	0.231	4.672	-0.067
-1.312	-1.312	3.623	-0.100	0.149	3.542	-0.032
-0.824	-0.824	2.605	-0.100	0.071	2.599	-0.035

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

log[ALC1]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 6.000	_	0.567	0.454	0.015	0.099	- 0.005
-5.522	-	0.989	0.974	0.017	0.000	0.002
-5.000	-	1.480	1.352	0.023	0.111	0.006
-4.522		1.746	1.332	0.029	0.380	-0.005
-4.000	-	1.969	1.531	0.069	0.357	-0.012
-3.522	-	2.109	1.492	0.050	0.600	0.033
-3.000	-	2.330	1.452	0.068	0.782	-0.028
-2.522	-	2.498	1.452	0.067	0.930	-0.049
-2.000	-	2.616	1.490	0.069	1.055	-0.002
-1.522	-	2.725	1.531	0.072	1.102	-0.020
-1.000	_	2.583	1.293	0.063	1.231	0.004
- 6.000	- 5.504	0.546	0.496	0.054	0.000	0.004
-5.000	-4.504	0.580	0.377	0.096	0.111	0.004
-4.522	-4.026	0.705	0.179	0.243	0.78	-0.005
-4.000	-3.504	0.849	0.417	0.255	0.192	0.015
-3.522	- 3.027	1.266	0.059	0.391	0.773	-0.043
-3.000	-2.504	2.277	-0.029	0.582	1.689	-0.035
2.522	-2.027	3.724	-0.084	0.738	3.051	-0.019
-2.000	-1.504	5.091	-0.100	0.499	4.666	-0.026
-1.522	-1.027	4.203	-0.100	0.216	4.016	-0.071
- 1.000	-0.504	3.214	-0.100	0.130	3.156	-0.028

Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 4.50

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

Table A15 Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively pH: 3.62

log[ALC1]	log[AL-V(V)]	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 6.000	_	0.500	0.497	0.020	0.000	0.017
- 5.698	-	0.682	0.676	0.030	0.000	0.024
-5.301	-	1.088	1.011	0.045	0.033	0.001
-5.000	-	1.397	1.332	0.049	0.015	-0.001
-4.602	-	1.742	1.492	0.066	0.172	-0.012
-4.124	-	1.800	1.492	0.059	0.234	-0.015
-3.602	-	1.856	1.452	0.083	0.330	0.009
- 2.999	-	2.060	1.551	0.061	0.443	-0.005
-2.602	-	2.218	1.691	0.070	0.467	0.010
-2.301	-	2.388	1.810	0.098	0.476	-0.004
- 1.903	-	2.550	1.890	0.086	0.564	-0.010
-1.602	-	2.674	1.850	0.070	0.746	-0.008
- 1.301	-	1.620	1.173	0.027	0.430	0.010
- 1.125	-	1.110	1.014	0.022	0.055	-0.019
- 0.999	-	0.907	0.795	0.017	0.107	0.012
- 5.810	- 5.296	0.598	0.388	0.077	0.113	-0.020
- 5.644	- 5.130	0.575	0.437	0.066	0.0620	-0.010
- 5.509	- 4.995	0.570	0.347	0.081	0.150	0.008
-4.986	-4.472	0.285	0.164	0.083	0.036	-0.002
-4.509	- 3.995	0.465	0.185	0.094	0.207	0.021
- 3.945	-3.431	0.754	0.042	0.357	0.506	0.151
- 3.509	-2.995	1.057	-0.019	0.249	0.820	-0.007
-2.986	-2.473	2.021	0.022	0.377	1.667	0.045
-2.685	-2.172	2.913	-0.019	0.349	2.560	-0.023
-2.301	-1.802	4.039	-0.068	0.318	3.784	-0.005
- 1.903	-1.404	4.557	-0.100	0.304	4.338	-0.015
-1.602	-1.103	4.812	-0.100	0.301	4.564	0.047
-1.301	-0.802	3.880	-0.100	0.152	3.784	-0.044
- 1.145	-0.647	3.517	-0.100	0.155	3.446	- 0.016

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

pm. 5.00						
log[ALCl]	$\log[AL-V(V)]$	$\Delta O_2 \text{ (mmol)}$	ΔO_{act}^{corr} (mmol)	Δ [Ch-E] (mmol)	Δ [Ch-ol] (mmol)	Σ [products] – ΔO_2
- 5.912	_	0.513	0.511	0.017	0.000	0.015
-5.435	-	0.782	0.695	0.033	0.058	0.004
-4.913	-	0.989	0.980	0.026	0.000	0.017
-4.435	-	1.129	1.009	0.031	0.111	0.022
-4.009	-	1.508	1.327	0.031	0.102	-0.048
-3.435	_	1.883	1.613	0.053	0.224	0.007
-2.912	-	2.399	1.816	0.090	0.501	0.008
-2.602	-	2.619	1.770	0.089	0.766	0.006
-2.213	-	2.777	1.939	0.134	0.732	0.028
- 1.999	-	2.638	1.878	0.085	0.662	-0.013
-1.602	-	2.404	1.770	0.065	0.567	-0.002
-1.301	-	2.286	1.810	0.076	0.390	-0.010
-1.125	-	2.243	1.690	0.064	0.478	-0.011
-1.000	-	2.198	1.472	0.061	0.655	-0.010
-5.912	- 5.399	0.414	0.316	0.061	0.023	-0.014
-5.435	-4.923	0.506	0.287	0.079	0.129	-0.011
-4.435	-3.923	0.571	0.075	0.088	0.380	-0.028
-3.435	-2.923	0.759	-0.018	0.195	0.561	-0.021
-2.912	-2.399	1.364	0.002	0.291	1.045	-0.026
-2.612	-2.098	2.152	-0.003	0.316	1.713	-0.126
-2.310	-1.798	2.964	-0.051	0.506	2.506	-0.003
-2.033	-1.521	3.809	-0.072	0.436	3.405	-0.040
-1.732	-1.220	4.836	-0.060	0.342	4.512	-0.042
-1.404	-1.059	3.643	-0.100	0.256	3.446	-0.041
-1.301	-0.806	3.396	-0.100	0.131	3.318	-0.047
-1.146	-0.651	2.920	-0.100	0.130	2.921	0.031

Dependence of the oxidation of cyclohexene with O_2 on the concentration of catalysts ALCl and ion-pair AL-V(V), respectively nH: 3.00

Conditions: 2.468 M cyclohexene + 0.0125 M t-BHP + the corresponding catalysts dissolved in 8.00 cm³ chlorobenzene.

References

- W.J.M. Pieters, W.C. Conner, E.J. Carlson, Appl. Catal. 11 (1984) 35.
- [2] G.A. Olah, Á. Molnár, in: G.A. Olah, Á. Molnár (Eds.), Hydrocarbon Chemistry, Wiley-Interscience, New York, 1995.
- [3] K.J. Jeans, S. Halvorsen, E.B. Ofsted, in: D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak (Eds.), Methane Conversion, Elsevier, Amsterdam, 1988, p. 491.
- [4] P. Lersch, F. Bandermann, Appl. Catal. 75 (1991) 133.
- [5] C.E. Taylor, R.P. Noceti, R.R. Schehl, in: D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak (Eds.), Methane Conversion, Elsevier, Amsterdam, 1988, p. 483.
- [6] C.D. Chang, Catal. Rev. Sci. Eng. 25 (1983) 1.
- [7] V.N. Rommanikov, K.G. Ione, Kinet. Katal. 25 (1984) 92.
- [8] Y. Sun, S.M. Campbell, J.H. Lunsford, G.E. Lewis, D. Palke, L.-M. Tau, J. Catal. 143 (1993) 32.
- [9] D. Wang, J.H. Lunsford, M.P. Rosynek, Top. Catal. 3 (4) (1996) 299.
- [10] F. Solymosi, A. Szőke, Catal. Lett. 39 (1996) 157.

- [11] F. Solymosi, J. Cserényi, A. Szőke, T. Bánsági, A. Oszkó, J. Catal. 165 (1997) 150.
- [12] D. Wang, J.H. Lunsford, M.P. Rosynek, J. Catal. 169 (1997) 347.
- [13] L. Wang, L. Tao, M. Xie, G. Xu, Catal. Lett. 21 (1993) 35.
- [14] Y. Xu, S. Liu, L. Wang, M. Xie, X. Guo, Catal. Lett. 30 (1995) 135.
- [15] F. Solymosi, A. Erdőhelyi, A. Szőke, Catal. Lett. 32 (1995) 43.
- [16] A. Szőke, F. Solymosi, Appl. Catal. A 142 (1996) 361.
- [17] F. Solymosi, R. Németh, L. Óvári, L. Egri, to be published.
- [18] J.S. Lee, S.T. Oyama, M. Boudart, J. Catal. 106 (1987) 125.
- [19] F. Solymosi, L. Bugyi, A. Oszkó, I. Horváth, J. Catal. 185 (1999) 249.
- [20] F. Solymosi, L. Bugyi, A. Oszkó, Catal. Lett. 57 (1999) 103.
- [21] F. Solymosi, in: E.G. Derouane (Ed.), Catalytic Activation and Functionalisation of Light Alkanes, Kluwer Academic Publishing, Netherlands, 1998, pp. 369–388.
- [22] D.C Harris, M.D. Bertolucci, Symmetry and Spectroscopy, Oxford Univ. Press, New York, 1978, p. 224.
- [23] B. Frühberger, I.G. Chen, J. Am. Chem. Soc. 118 (1996) 11599.

- [24] M.A. Chesters, C. De La Cruz, P. Gardner, E.M. McCash, P. Pudney, G. Shahid, N. Sheppard, J. Chem. Soc., Faraday Trans. 86 (15) (1990) 2757.
- [25] Y. Suda, T. Morimoto, M. Nagao, Langmuir 3 (1987) 99.
- [26] M.D. Driessen, V.H. Grassian, Langmuir 14 (1998) 1411.
- [27] E.A. Wovchko, J.C. Camp, J.A. Glass Jr., J.T. Yates Jr., Langmuir 11 (1995) 2592.
- [28] Z. Kónya, I. Hannus, I. Kiricsi, Appl. Catal. B 8 (1996) 391.
- [29] J.E. Crowell, T.P. Beebe Jr., J.T. Yates Jr., J. Chem. Phys. 87 (1987) 3668.
- [30] T.P. Beebe Jr., J.E. Crowell, J.T. Yates Jr., J. Phys. Chem. 92 (1988) 1296.
- [31] J. Raskó, I. Bontovics, F. Solymosi, J. Catal. 143 (1993) 138.
- [32] J. Raskó, F. Solymosi, Catal. Lett. 46 (1997) 153.
- [33] J. Raskó, F. Solymosi, Catal. Lett. 54 (1998) 49.
- [34] I. Kiricsi, H. Förster, Gy. Tasi and, J.B. Nagy, Chem. Rev. 99 (1999) 2085.